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Phase transition from periodic to quasiperiodic behaviour 
in 4~ cellular automata 

Jan Hemmingssont and Gongwen Peng 
HLRZ, Fonchungszentrum JUlich, D-52425 JUlich, Germany 

Received 6 Januuy 1994 

Abstract We have found a phase transition from periodic Io quasiperiodic behaviour in four- 
dimensional cellular automata by mixing rules. As far as we know, this kind of phase transition 
has not been studied before, and may thus serve as a pilot case. 

Rather surprisingly, several examples of global behaviour were found in cellular automata 
(CA) and coupled-map lattices ( C m )  some years ago [I, 21, though there were arguments 
against the occurrence of global non-trivial behaviour under generic conditions in extended 
non-equilibrium systems governed by local interactions only [3-51. The main idea behind 
these arguments were that in such an extended system, regions in space with a slightly 
different phase will naturally emerge from stochastic perturbations. Since all interactions 
are local, any 'bubbles' of different phase will eventually grow and destroy the global 
phase of the system. However, if the dimension of such a discrete system is high enough, 
one could, on the other hand, expect that the system would be able to approximate the 
behaviour of any iterative function of a single variable. Working along these lines, Chat6 
and Manneville found several four- and five-dimensional CA with periodic and quasiperiodic 
behaviour [l]. Later, a three-dimensional CA with quasiperiodic behaviour was found [2]. 
In a recent work, Grinstein et al [6] claimed that in three dimensions, there cannot exist 
any CA with periodic behaviour under generic condition. 

In this paper, we investigate what happens when the periodic and quasiperiodic rules are 
mixed in four dimensions. The model is described as follows. Consider a four-dimensional 
hypercubic lattice of side length L with periodic boundary conditions. On each lattice site i 
there is a binary, time-dependent variable uj(t) (also called spin). The magnetization, which 
is the global quantity of main interest, is defined as the fraction of sites with spin I, i.e. 
m ( t )  = xi q ( t )  where N is the total number of lattice sites. Here all initial configurations 
were made by letting each site have spin 1 or 0 randomly with equal probability. At each 
time step, the update of the spin at a site i is determined by the sum of the spins in 
its von Neumann neighbourhood (the site itself and its nearest neighbouring (nn) sites), 
hi( ( )  = q ( t )  + Coounno(t). The update rule reads as follows: 

1 if h i ( ( )  E [a, b] I 0 otherwise. Ui(t t 1) = 

As found by Chat6 and Manneville [l], if a = 3 and b = 8, the magnetization is periodic 
while if a = 4 and b = 8, the magnetization is quasiperiodic in time. Here we mix these 

t Permanent address: IFM, Linktiping Institute of Technology, S-58183 LinkBping, Sweden. 
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two different rules by assigning the 3-8 rule to each site with a probability p and assigning 
the 4-8 rule with probability 1 - p t .  After discarding the first 500 iterations, the return 
map, m(r + 1 )  versus m(r). is plotted for several p between 0 and 1 in figure I .  The two 
axes with the same tick represent m(r) and m(t + I )  while the other one is for the mixing 
probability. It is easy to see that the system is quasiperiodic in the regime with low mixing 
parameter p where the 4-8 rule dominates. The return map for the quasiperiodic case is 
characterized by a circuit (here it is more or less triangular). When the mixing parameter p 
is high, the system is periodic in the sense that the return map is just three points (period-3 
orbit). At p % 0.79 the system changes from quasiperiodic to periodic behaviour. 

J Hemmingsson and G Peng 

Figure 1. Re” maps for different values of mixing parameter p .  At p zz 0.19 the behaviour 
changes from quasiperiodical to periodid. 

To characterize this transition, we calculated the Fourier transform of m(t) and chose the 
absolute value of the component corresponding to the time period r = 3 as order parameter, 

where T is the total length of the time series used. Figure 2 shows a plot of 0 versus mixing 
probability p for different lattice sizes. It is clear that there is a transition at p % 0.79. 

To obtain better statistics we averaged over many time series (32 for L = 16, 16 for 
L = 32, 4 for L = 64) with time length T = 1024 for each. The critical transition point is 
very slightly dependent of the system size, giving rise to the critical exponent U defined by 
(see, e.g., VI)  

perf - Pc - L-’lu (3) 
where per is the critical mixing probability for the phase transition for finite system size 
(which is the point where the slope dO/dp is maximal) and pc  is the critical point for the 
infinite system. Figure 3 shows a fitting line using the exponent v = 1 2  for three lattice 
sizes L = 16,32 and 64. The critical point pc is found from figure 3 to be about 0.79f0.01. 
To estimate the exponent p which characterizes how the order parameter varies near pc ,  
0 - ( p  - pc)B, we have done the finite-size scaling using the scaling assumption [7]: 

@ = L - @ / ” F [ ( p  - pJL’~”1 .  (4) 
t This mixing rule was employed to be either quenched or annealed. giving no essentially different resulf.~. 
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Figure 2. Plot of order p m f e r  versus mixing probability for different lattice sires. 
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Figure 3. Plot of effective critical point for finite system sizes L versus L-'/" with Y = 1.2. 

Figure 4 shows data collapse for different system sizes. The horizontal axis represents the 
quantity (p - pC)L'/" and the vertical axis stands for @Lo/". The fitting exponents and the 
critical mixing probability pc  used in this figure are p = 0.1 & 0.05, U = 1.1 i 0.1 and 
pc  = 0.79 =k 0.01, respectively, which are consistent with figure 3. 

The simulations were performed using two Connection Machines; a 16K-node CM-2 
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Figure 4. Data collapse for finite-size scaling (equation (4)) using fitting exponents 6 = 0.1. 
Y = 1 . 1  and lhe critical mixing probability pE = 0.79. 

at GMD in Bonn and an 8K-node CM-200 at PDC in Stockholm. It may be possible 
to simulate even larger systems if one uses some special techniques, including one linear 
dimension. With standard programming, however, the 256 Kbits per node available at the 
16K CM-2 would only give 16 bits per site for a 128' site system, which was not enough 
for simulating such a system. 

In conclusion, we have found a phase transition from periodic to quasiperiodic behaviour 
in four-dimensional cellular automata by mixing two different rules. The order parameter is 
chosen to be the absolute value of the Fourier wansform of the magnetization corresponding 
to the time period t = 3. By simple means, we estimate pc  zz 0.79 and the values of the 
exponents p FT 0.1 and U c 1.1. 
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